1,348 research outputs found

    experimental study of hydrogen embrittlement in maraging steels

    Get PDF
    Abstract This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically, in the Virgo detector, blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure, the relationship between hydrogen concentration and mechanical properties of the material, have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally, some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon

    Innovative crop and weed management strategies for organic spinach: crop yield and weed suppression.

    Get PDF
    In organic agriculture, it is important to tackle crop and weed management from a system perspective to make it effective, especially in poorly competitive crops such as vegetables. For that reason, we developed two innovative integrated crop and weed management systems for a field vegetable crop sequence in a commercial organic farm that we have been comparing to a standard farm system from 2006 to 2008. The three systems are applied to a spinach-potato-cabbage-tomato two-year crop sequence and include different levels of technical innovation: Standard Crop Management System (SCMS); Intermediate Crop Management System (ICMS); and Advanced Crop Management System (ACMS). ICMS is based on a sequence of physical weed management treatments, whereas ACMS also includes a subterranean clover (Trifolium subterraneum) living mulch. In this paper we analyse the results obtained on spinach (Spinacia oleracea) in terms of crop yield and weed suppression. Both innovative systems increased total spinach fresh weight yield compared to SCMS, despite higher weed biomass. In ACMS, total weed biomass decreased linearly with increasing biomass of the subterranean clover living mulch

    Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium

    Get PDF
    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-10 Hz. The experimental measurements presented in this paper, have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system identical to that one used in the VIRGO experiment. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environmental. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the measurement distribution is stationary and Gaussian, as expected for a system at thermal equilibrium. Through a simple mechanical model it is shown that: applying the fluctuation dissipation theorem the measured power spectrum is reproduced below 90 Hz and noise induced by external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte

    Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection

    Get PDF
    In order to achieve full detection sensitivity at low frequencies, the mirrors of interferometric gravitational wave detectors must be isolated from seismic noise. The VIRGO vibration isolator, called 'superattenuator', is fully effective at frequencies above 4 Hz. Nevertheless, the residual motion of the mirror at the mechanical resonant frequencies of the system are too large for the interferometer locking system and must be damped. A multidimensional feedback system, using inertial sensors and digital processing, has been designed for this purpose. An experimental procedure for determining the feedback control of the system has been defined. In this paper a full description of the system is given and experimental results are presented.Comment: 17 pages, 11 figures, accepted for publication on Review of Scientific Instrument

    Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks

    Full text link
    Prediction of one-dimensional protein structures such as secondary structures and contact numbers is useful for the three-dimensional structure prediction and important for the understanding of sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrices, to the prediction of secondary structures (SS), contact numbers (CN), and residue-wise contact orders (RWCO). The present method achieves, on average, Q3Q_3 accuracy of 77.8% for SS, correlation coefficients of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS prediction is comparable to other state-of-the-art methods, and that of the CN prediction is a significant improvement over previous methods. We give a detailed formulation of critical random networks-based prediction scheme, and examine the context-dependence of prediction accuracies. In order to study the nonlinear and multi-body effects, we compare the CRNs-based method with a purely linear method based on position-specific scoring matrices. Although not superior to the CRNs-based method, the surprisingly good accuracy achieved by the linear method highlights the difficulty in extracting structural features of higher order from amino acid sequence beyond that provided by the position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for publication in BIOPHYSIC

    Energetic aspects of turfgrass mowing: comparison of different rotary mowing systems.

    Get PDF
    Turfgrass mowing is one of the most important operations concerning turfgrass maintenance. Over time, dierent mowing machines have been developed, such as reel mowers, rotary mowers, and flail mowers. Rotary mowers have become the most widespread mowers for their great versatility and easy maintenance. Modern rotary mowers can be equipped with battery-powered electric motors and precise settings, such as blade rpm. The aim of this trial was to evaluate the dierences in power consumption of a gasoline-powered rotary mower and a battery-powered rotary mower. Each mower worked on two dierent turfgrass species (bermudagrass and tall fescue) fertilized with two dierent nitrogen rates (100 and 200 kg ha1). The battery-powered mower was set at its lowest and highest blade rpm value, while the gasoline-powered mower was set at full throttle. From the data acquired, it was possible to see that the gasoline-powered mower had a much higher primary energy requirement, independent of the turf species. Moreover, comparing the electricity consumption of the battery-powered mower over time, it was possible to see that the power consumption varied according to the growth rate of both turf species. These results show that there is a partial waste of energy when using a gasoline-powered mower compared to a battery-powered mower

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding
    • …
    corecore